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éb,stract:

A new method is presented for the computation of electromagnetic scattering from
axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the
method combines the finite element and boundary element techniques. Interior to a
fictitious surface enclosing the scattering body, the finite element method is used which
results in a sparse submatrix, whereas along the enclosure the Stratton-Chu integral
equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder,
most of the resulting boundary integrals are convolutional and may therefore be evaluated
via the FFT with the system is iteratively solved. In view of the sparse matrix associated
with the interior fields, this reduces the storage requirement of the entire system to O(N)
making the method attractive for large scale computations. This report describes the
details of the corresponding formulation and its numerical implementation.






Contents

1 Introduction 4
2 Analysis 6
2.1 Finite Element Formulation . .. ... ... ..... ... ....... 8
2.1.1 Analytic CAP Formulation . ..................... 8

2.1.2 Discretization of the CAP Equations . . . .. ............ 11

2.2 Boundary Integral Formulation . . ... ................... 17
2.2.1 Derivation of the Modal Boundary Integral Equation . . . . . . .. 18

2.2.2 Discretization of the Modal Boundary Integral Equation . . . . . . 23

3 Scattered Field Computation 28
4 Results 33
A Derivation of Modal Incident Field 41
B Maxwell’'s Equations for Axisymmetric Media 45
C Derivation of Boundary Conditions 46
C.1 Derivation of Axial Boundary Conditions . ................. 46



C.2 Derivation of PEC Boundary Conditions . . . .. ... ...........

Ewvaluation of Finite Element Contour Integral
D.1 Contour Integral Evaluation along Conducting Surfaces ... .......
D.2 Contour Integral Evaluation along the Axis of Symmetry .........

D.3 Contour Integral Inter-element Connection Cancellation ... ... .. ..
Evaluation of the Finite Element Matrix Elements

Boundary Integral Matrix Elements

F.1 Elementsof P® . . . . ... ittt ittt e ee e
F.2 Elementsof P* ......... .......................
F3 Elements of Q% . . . . . . o v it ittt e e e
F4 Elementsof Q¥ . . .. ... .. .. vt I
F5 Elements of QF . . . . . . . .. it ittt it s ittt i

F6 Self-Cell Evaluation . . . . . . . v i v vt v vttt vt mm e ee oee o

51

51

52

52

53

58



List of Figures

2.1

2.2

4.1

4.2

4.3

4.4

General surface of revolution. . . .« « v v ¢ 4 ¢ v v v v b e s e e e 7

Cross section of a generating surface enclosed by the fictitious boundary

Mode 0 TM and TE bistatic scattering pattern from a perfectly conduct-
ing circular cylinder of length 1A and radius 0.1 for broadside incidence. 34
Mode 1 TM and TE bistatic scattering pattern from a perfectly conduct-
ing circular cylinder of length 1\ and radius 0.1 for broadside incidence. 35
Modes 0+1 TM and TE bistatic scattering pattern from a perfectly con-
ducting circular cylinder of length 1A and radius 0.1 for broadside incidence. 36
TM and TFE bistatic scattering pattern from a perfectly conducting cir-

cular cylinder of length 1) and radius 0.1\ for axial incidence.. . . . . .. 37



Chapter 1

Introduction

A restraining factor in the numerical simulation of three-dimensional structures for
electromagnetic scattering computations is the storage requirement associated with the
chosen method. For sub-wavelength structures traditional methods [1] have been found
to work well. However, for structures spanning several wavelengths, the storage require-
ment limits the use of these methods.

For the special case of axially symmetric structures or bodies of revolution (BOR), a
reduction of the storage requirement is accomplished by reducing the three-dimensional
problem to a set of two-dimensional ones. Several moment method codes have been
developed for the solution of these ([2] - [7] and others). However, for large structures
the required storage of O(N?), where N denotes the number of unknowns over the BOR
cross section, limits their use.

To further reduce the storage requirement, hybrid finite element methods ([8]-[12],
etc.) may be used, since the storage associated with the finite element method is O(N)
in contrast to the O(N?) requirement of moment methods. These methods differ from

one another primarily by the application of the radiation condition. The most accurate



method enforces the radiation implicitly through an application of the boundary integral
equation over a fictitious boundary enclosure [11], and in this case the storage is still
O(N?), where N, is the number of unknowns on the boundary. However, through a
judicious choice of the enclosing boundary, the storage requirement can be reduced to
O(N). This can be achieved by selecting the enclosing boundary to be rectangular or
circular [15), [16], making some of the integrals convolutions which can then be evaluated
via the FFT when an iterative solution scheme is em‘ployed.

The proposed method combines the finite element and boundary element methods for
the solution of inhomogeneous bodies of revolution. The coupled potential equations [10]
are discretized via the usual finite element method, and the resulting system is augmented
by a discrete representation (via the boundary element method [13]) of the Stratton-Chu
equations [14]. By choosing a right circular cylinder to enclose the scatterer, some of
the integrals become convolutions and their discrete counterparts are then evaluated
via the FFT in conjunction with an iterative solution procedure as was done in the
two-dimensional case [15]. With some care, the storage is reduced to O(N).

In this report, we describe the formulation for the proposed finite element - boundary
element method as applied to the body of revolution. Some preliminary results are shown

to be in reasonable agreement with the method of moments (MOM).



Chapter 2

Analysis

Consider the body of revolution (BOR) illustrated in fig. 2.1. To employ the proposed
finite element - boundary element (FE/BE) method, the BOR is tightly enclosed in a
fictitious finite length cylinder, which divides the entire space into two regions, i.e. the
one enclosed by the cylinder and the other exterior to it. Since the interior region is
generally inhomogeneous, the finite element method is suited for formulating the fields
of that region, whereas the boundary element method is applicable for the exterior free
space region. A usual approach [3] for treating BORs is to introduce a Fourier series (in
the azimuthal coordinate ¢) representation of the fields, reducing the problem to a set
of two-dimensional ones. The finite element - boundary element method is then used to
compute each modal field and the final result is found by adding the modal fields.

In the following, we present the finite element and boundary element formulations

for each mode. First, the finite element formulation is developed.
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Figure 2.1: General surface of revolution.



2.1 Finite Element Formulation

In this section, we derive the analytical coupled azimuth potential (CAP) equations

[17] which are then discretized via the finite element method.

2.1.1 Analytic CAP Formulation

Maxwell’s equations in a source free region (a e“* time dependence is assumed and

suppressed) are given by

V x E(F) = —jwuH (2.1)
V x H(F) = jweE (2.2)
V.-D(F)=0 (2.3)
V-B(f)=0 (2.9)

| (2.5)

For axially symmetric media, the fields may be represented as Fourier series in the

cylindrical coordinate ¢ as

EF)= 3 En(p2)e™ | (2.6)
AF = 3 Fnlo,2)e™ @7

and when these are substituted into Maxwell’s equations (2.1) and (2.2), we obtain

* []mhm, - ﬁ(Rhmé)] = j‘remp (2.8)
klimem: — &(Reme)l = —jprhm, (2.9)
R[ &hmp = Fhm:] = jer(Remg) (2.10)

8



R &emp— Fxem:]= —jpr(Rhmg)
* [Jmhmﬂ - ﬁ(Rhmé)] = ’j‘remz
% [imem, — #x(Remg)] = jprhms
with
R = kop

Z=koz

(2.11)
(2.12)

(2.13)

(2.14)

(2.15)

to be referred to as normalized coordinates. Substituting Ay, of (2.13) into (2.8) gives

€mp = jfm [m 'o%(RCﬂW) + R#f &(Rhmé)]
where

fm= [R2K2 - m’] -

K2 = pee,
Substituting e, of (2.8) into (2.13) we obtain
hme = Jfm[m Fg(Rhme) + Rer f(Remy))
Substituting ks, of (2.9) into (2.12) yields
ems = Jfm [m Fy(Remy) — Rur Ff5(Rhmg)]
Substituting ems of (2.12) into (2.9) yields

hmp = jfm [m & (Rhmg) — Rey F(Remy))

9
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Equations (2.16) through (2.21) may be written in compact form as

$XERZ) = jfm[mdX Vit - pr RVetn] (2.22)
$xH(R,Z) = jfm[mbx Vepn+ & RV:the| (2.23)
$-¥R,Z) = v./R (2.24)
é-R(R,2) = ¥u/R (2.25)
where
Vi=pfh+ig (2.26)

Rewriting (2.10) and (2.11) as
RV, - (¢ X Bn) = —jer e (2.27)
RV (¢ X &) = jurtn (2.28)

and then substituting (2.22) and (2.23) into them, we obtain the CAP equations

Ve [fm(e- RV et + md x V] + f%”-‘ =0 (2.29)
Ve [fm(r RO n = m x Ve + £22 _, (2.30)

This system may be written in operator form as

Iy=0 (2.31)
where
Lo | VeUneRVI+E  mVdfndx vy (2.32)
—mVifmd X Vi) Ve [fmpr RV + 8
and
v=[v )7 (2:33)

10



Figure 2.2: Cross section of a generating surface enclosed by the fictitious boundary I',.
2.1.2 Discretization of the CAP Equations

To discretize (2.31), we first enclose the generating contours of BOR in a fictitious
boundary I'; and the axis of symmetry as shown in Fig. 2.2. The contour I', is chosen to
be rectangular in shape thus generating a right circular cylinder. The region interior to ',

is divided into N, linear triangular elements and within each element the corresponding

11



weighted residual expression is written

_/j RNf{(R,Z)RqedS® =0 (2.34)
where (RN?) is the weightini function and R, is the residual. Further, Nf is the usual
linear shape function found in any finite element book [18]. Using this definition, (2.29)

and (2.30) may be written

S‘/I/RNS {Vt . [fm(‘ert'/’e + m‘i’ X Vﬂ(’h] + i’;b'e'} asc=0 (2'35)
S/e [ e {v, - [ fn (e BV 58 — m x Vitse] + “—;b"} dse =0 (2.36)

and upon using the identity

(RNf)Ve -’ =V, (RNFA") - A - Vo(RNY) (2.37)
we obtain
/, [ BNE [0 { RN fo (c BV et + b x Vo) }
+e,.¢,N,-°6; fm (- RV e + m x Vitn) - Ve(RN?)| d5* = 0 (2.38)
/ J RN? [V {RN} fm (e RV90h — mb x Vive) }
+u,¢,.N.i S (e RV ets = m x Vi) - Vo(RNF)| d5° = 0 (2:39)

Further, by invoking the divergence theorem (2.38) and (2.39) may be written as
J] {[=1m (R e+ md x Vet - Vi(RNE) + ot} d*
SE

+§ 6 [RN:fn («RVAb+ mdx Vetn)|dif =0 (240)

JI = (1 BP0 = m x Vo)) - Vi(RNE) + N} a5
SC
+ }( - [RNE S (e RV 81 = m x V)| d = 0 (2.41)

12



where # is the outward normal along the boundary, C*¢, of the eth element. Finally,

these may be simplified by making use of (2.22) and (2.23), yielding
/ / {[- I (& RV + mé X Ven)] - Vi(RNF) + & ¥e N7} dS°
5¢
- §  RNE(ibm)d* = 0
ST {[-fm (0 B85 — m x Veshe)] - Ve(RNE) + e NE} dS°
SG

4§ RN:(iem)die =0

where
emt =1 €m
Rt =1+ Ry
with
i=nx it

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

To form a system of equations over the eth element, the fields are represented as a

linear basis expansion as

3
Ye(R,Z) = 3 i;RN;(R, Z)

j=1

3
'bh(Ra Z) = E 'b:JRN;(Ra Z)

=1

Substituting these into (2.40) and (2.41) yields
3
3 / / {[- fme- RV(RNF) - V(RNF) + & NENF] 05
i=1 | §¢
—mé x Vi(RNY)- Vi(RNF)Y5, } dS5°]

13
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- fc RN (jhme)dl* = 0 (2.49)

)> L/ [ { [ fmie RV (RNE) - V(RNG) 4 1 NENT) 5,
j=1|g¢

+mé x Vi(RN}) - V(RN } dS°]

+ }{3 RN (jene)dl* = 0 (2.50)

To proceed further, it is necessary that we evaluate the integrals over the surface of the

element.

Assuming ¢, and u, are constant within a given element, (2.49) and (2.50)

3
3 [ctafyusy - b5¢5s] - £, RNZGhmo)dl =0 (2.51)
j=1
3
3 [egywey + wtatwt] + § RN:(ema)d = 0 (2.52)
J=1
where
aj; = / f [—meV:(RN.’)'V:(RNf)+N.-‘N,-’] dse (2.53)
SG
5= [ [mbx V(RN - V(RN ] s 2.54)
S

Summing over all elements to obtain a solution for the entire problem region, our system

becomes
N, 3 Na
D3 [erative = b59k] = 3 cishmes = 0 (2.55)
e=1j=1 =1
N, 3 N,
> [bfj o + #:ijﬂbﬁ,‘] + Zcflemt. =0 (2.56)
e=1,=1 =1
where
¢ = /r RN:PIAI (2.57)

14



and P! is the pulse function equal to unity in the sth element. Note that in (2.55) and

(2.56) the contour integral contribution canceled out except along the boundary I's as

shown in Appendix D.

In block matrix form (2.55) and (2.56) may be written

A% iz
A, Al
Aj. Ay
Ag Ay
Baa Bar
Bia B
Bi:a B,

Bda BdI

Al

¢
Iz

Az

¢
ad
€
Id
€
zd
Ay
Bad
B4
Bxd

Bad

—B,a
-Bi.
=By
—-By,
AL,
n

A%

—Ua]
-Byr
"B:I

-By;

m
AaI
u
Aqr
u
AzI

u
AdI

-Bh

“Bzz

Az,
AL

Az

—Ba4
-Br4
—B.4
—-By
A2,

B
AId

- Cuu

=

Emgl
€méz
€méd
hmga
hpgr
hm¢z
hméd
Jemt

j hmt

T
=[oooooooooo](2-58)

in which we have substituted 1. and v, with en¢ and hmg¢, respectively, and

Ne
)
e=x]

N,
A* =3 i
ex=1

(2.59)

(2.60)

(2.61)

(2.62)



The subscripts on A*#, B and C refer to the various regions of § and its boundary. The

elements of (2.59) - (2.62) are derived in Appendix E and are listed as follows

af; = [~afaiQio — (Bfaf + B5af)Qu — 2(7fef + 7iaf)Qw0 — 2(Bf75 + B577)Qz1
=B B;Q12 — (47775 + B7B5)Q30
+aiaiPio + (Biaj + Bjaf)Pu + (1{af + v5ai)Pao + (8575 + B575) P + B7 B Pra

+7f7§Pm](2Tle)1,(2.63)
and
b = e l(B5es = Ae5)Quo + A5t - A1))Qa (2.64)

where the Ps and Qs are defined in Appendix E. The elements of C are

Cu=cq
Cot1,0 = €3 (2.65)
where
ch = oy = B for 'ay
o1 =4(A’ £ R{)(R] + R}) F}(R3* + R{R} + R?) upper sign for T, (2.66)
¢ = FILRI(BL + R3) —3(RE® + BRIy + R3?)) lower sign for Tas

To form a complete system, (2.58) must be appended Iby a discrete version of the

boundary integral equation to be discussed next.

16



2.2 Boundary Integral Formulation

The electric and magnetic fields are represented in the unbounded region by

EF) = O+E®F (2.67)

'HF) = BO+H@ (2.68)

where E'(F) and T'(7) are the incident fields and the scattered fields are given by the

Stratton-Chu equations [14]

EF) = ﬁ {~jou |3 x B(™)] o7, 7) + [#' - E(F)] V'g(7, )
Sl
+[# x B(7)| x V'g(F, ™)} dS’ (2.69)
''(F) = yff {iwe [# x E(™)] o7, 7) + [# - H(F)] V(7. F)

+[# x B(F)| x V'g(r,7)} ds’ (2.70)

where ¥ and T are the source and observation points, respectively and

e-jkorf-’;”
4

9(7,7) = m (2.71)

is the free space Green’s function. It is convenient for computational purposes to elimi-
nate the presence of the normal field components and after some manipulation we obtain
E'F) = g { —jko [#' x wH(F)] 9(F7) + ;,1:—0 [# - V' x H ()] V'o(F,7)
+[# xE(™)] x V'g(F,7)} a5’ (2.72)
wH(F) = .sg { jko [#' x E(F)] o(7,7) - J%o [# - v x ()] V'g(r,7)
+[# x o B(™)] x V'g(7,7)} dS' (2.73)

17



For ¥ = ¥, the integrals in (2.72) and (2.73) are singular and by removing these singu-

larity, they may be rewritten in terms of principal integrals as

) =T+ §F {-ko [# x )] tr,7)
S
+-.-1,;- [# - " x B (7)] V'g(r, ) + [#' x E(F)] x v'g(r,r)} ds’ (2.74)
Jko
iwH(F) = ol (F) + # {1k [#" x E(7)| o(7,7)
g |
‘3%; [ v xB(™)] V'o(F,7) + [ x B (F)] x V'g(?,?’)} s’ (2.75)

where we have also made use of (2.67) and (2.68). These must now be enforced on the
boundary so that they can be coupled with the FEM equations.

Initially, we will allow 5’ to be a general surface of revolution and will then specialize it
to the case of a right circular cylinder. In the next section, we derive the modal boundary
integral equations by expressing the fields and the Green’s functions as a Fourier series
in the cylindrical coordinate ¢. The resulting modal equations are then discretized and

the resulting subsystem is augmented to the finite element system previously derived.

2.2.1 Derivation of the Modal Boundary Integral Equation

Consider the general surface of revolution indicated in fig. 2.1 whose tangential unit
vectors are denoted by ¢ and {. The angle v is that between the 7 and the z-axis and is
negative when 7 points toward the z-axis. Referring to the figure, we may represent the

various unit vectors as

>

= Zcosvcosd+ Jcosveing — Zsinv (2.76)

¢ = ~Zsing+gcosd (2.77)

18



L2 ]
]

Zsinvcosdp+ Jsinveingd + Zcosv (2.78)

i = {sinvcos¢+ ficosvcosd— dsing (2.79)
§ = {sinvsing+ fcosveingd+ deos¢d (2.80)
2 = tcosv—fisiny (2.81)

Expressing the primed unit vectors in terms of the unprimed unit vectors results in
i = ¥’ [sinv" sin v cos(¢ — ¢') + cos v cos v']

+#' [cos v’ sin v cos(¢ — ¢') — cos vsin v'] + ¢ [sin vsin(¢ — ¢')] (2.82)

# = {' [sin v’ cos v cos(¢ — ¢') — sin v cos v']

+#/ [cos v/ cos v cos(¢ — ¢') + sin vsin v'] + ¢’ [cos vsin(¢ — ¢')] (2.83)

¢ = -1 [sinv'sin(¢ — ¢')] — &’ [cos v'sin(¢ — ¢)] + ¢ [cos(d — ¢')]
= -p'sin(¢ - ¢') + &' cos(d - ¢') (2.84)

Taking the ¢ component of (2.74j and noting the identities,

¢ (7' x oH) = —mpHgsin v sin(¢ — ¢') — mH; cos(¢ — ¢') (2.85)
$-Vg=-4-Vg (2.86)
W (V' xoH) =3 [~ &(e'mHe) + H(noHy)| (2.87)

é- [(ﬁ' x E) x V'g] =
[#E:sin(¢ — ¢') + 4By cos(¢ — ¢') + ¢'E cos v/ sin(¢ — AR (2.88)

19



we may rewrite (2.74) as

SE4(F) = Ey(")

f. f (ko] mm sin v/ sin(¢ - ¢) + moHs cos(é - #')] (T, )
J,W, [- 2('mE) + #(mE)] $- Vo F)

+ [#Eesin(¢ - ¢') + #'Ey cos(¢ - ¢') + ¢ Ey cos o' sin(¢ - ¢')] - V'g} p'dg/'dT’ (2.89)

Further, by carrying out the derivatives of the Green’s functions, we have

SEu(F) = Ei(7)

fof : {iko ['IoH¢ sin v’ sin(¢ — ¢') + noH. cos(é — ¢')] 9(F,F)
1 dg
Ro dRo

+(Eesin(¢ — ¢) + Eglp’ cos v’ cos(é — ¢)

o - S (s + (ol sin(d - ¢)

—pcosv’ + (z — 2')sin v’ cos(¢p — ¢')]) I;od‘go} p'd¢'dl (2.90)
in which
Ro = \/p? + p — 2pp’ cos(¢ — ¢/) + (z = =')? (2.91)

To generate the corresponding integral equations for the modal components, the fields

and Green’s function may be expanded as

M= Y Enlp2)em™ (292)
wH(F) = f: R (p,z)e™* (2.93)
d¥FT) = Z 9B, p',2,2')em#=4) (2.94)

n==—=00

20



where

Em(py2) = 2%_ )[: ’f(p,u, z)e"I™udy
hm(p,2) = ﬂ J[' ﬁ(p,u,z)e"'""‘du

99,0, 2,2) = yn(p,p ,2,7') = f o coﬁ(mt)ﬂlu
(1)(ptp 12,2 ’) == [gn-l(PvP 12,2 ) + gn+1(P,P 12,2 )]

-ﬂloR
== ][ cos u—r cos(nu)du

dp,p',2,7) = —3  [gn-1(0 8,2, 2') = Gn41(p, 9,2, 2")]

-JkoR
= ~-= ]l sin u 3 sin(nu)du

1 d
(0) (P’P 2 z) gn(p’P 12,2 ) = 1rk2 f ’i'd_l% cos(nu)du

(1) (Prp z Z') =5 [gn—l(p’p ,Z,Z’) +gn+l(p9p z,2 )]
1

= —m ][ " cos u%d%% cos(nu)du

(2) (P’P z z’) = —" [gn—l(P,P zvz) 9»+1(P9P 2,z )]

rk’ ][ sinu= -:—i sin(nu)du

with

R= \/p2+pl2-2pp’cosu+(z—z')2

Substituting these into (2.90) yields

o0 ©0

Z_ %e“"’(p 2)e’™ = E ¢ 4(p, 2)eM™*
+ E E "w][ ][ {Jko [hm¢31nvg(2)+hmtg9)]

N=—00 M= -

b = (s + ] 5

21
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(2.98)
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(2.100)
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~emi(z — 2)k3g%) + emokd(p' cosv'g{l)’

—pcosv'g, + (z - 2')sin v'g,(,l)')} (=4 gl a4tdr (2.104)
and by multiplying each side by e~/P® and integrating over (0,27) to extract the mth
modal equation results in

1 .
Lem(617) = ehnglp,3)
+2x ][l_ {ihmesinv'e® - j (o hmsg + (hme) [o) + jmg?]
—emt(z = Yhog® + empka(s cos v/gd)
—pcos v'g,, + (z — 2')sinv'gl’ )} kop'dl’ (2.105)

after combining terms and where we have used

2r . , 2r m=n
/ gm=-nd gy = (2.106)
0 0 otherwise

For the case in which I'(=I,) is the generating cross section of a right circular cylinder
(indicated in fig. 2.2) the integral in (2.105) may be written as a sum of three integrals,

one over each side of T'a(= 7. T,,) as

%em(m z) = epg(p, 2)
+2m ][ {hmo92 = 5 5 (¢ hng)0 2 + (iBme) [s5) + img@']
—emi(z — za)kog,(n) + emgko(z — z;;)g‘l) } kop'dp’
427 {5 1 (pabme)o2’ + (o) o) + jmgl2]
—emi(z =~ 2)kogls) + emgko(p2gl) - pa,)} kopadz’
+2x ][ {-Jhm¢9 -3 (' hmg) + (Ghmt) [9(1) +J'my,(3)']
—emi(z = 2Ykoglt) ~ emgho(z — ) Y ko'dp’  (2.107)
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Introducing the normalized coordinates
R= kO p R = kO pl
Z = koz Z' = ko2 » (2.108)

& =ko 5%
(2.107) becomes

Semé(R,Z) = eng(R, 2)

+ ][ {7hmeg® = 5 S (R'hmg)a + (ihme) [o8) + imalsY|
+i(Geme)(Z = 23)92) + emg(Z = Z3)g)'} R'dR’
+ f {5 o (Rohmg)s® + (ihme) o) + jmg?]
+i(Geme)(Z = 20 + emp(Ragl)’ — Rop)} RadZ'
4 2 {~bmes = 3 o (R bma)ol2 + (i) [ o) + mof?]
+i(em)(Z = 2')98" - eme(Z - 2')g3'} R'dR (2.109)
This equation and its dual are discretized in the next section.

2.2.2 Discretization of the Modal Boundary Integral Equation

Consider the fig. 2.2 where the rectangular boundary is divided into N, boundary
elements and are equal in length along the I'y;. Along the boundary, the fields are

éxpanded into pulse basis functions as

U(R,Z") = }: +1p( -R,Z;y -2 (2.110)
j=1

where U represents any one of the components €4, Amg, €m¢ OF hpm¢ and

L 125y - 21 S 4, Ryyy - RIS B

0 otherwise
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and

Zaf_zx. = Big+Ri (2.112)

Z5+;- :+} = 3

Substituting the pulse basis expansion into (2.109) and simplifying yields

Semé(R,Z) = ehy(R, Z)

N. ) R,
+ .2 { {hmd}j«t-} ][ s R'dR
J=Na1+Nea+1 Rj41
R. . ’
+{(R'hm¢)};44 ][ T =g RdR + {jhme}i ][ [gﬁ) + jmg,(,f)] R'dR’
J+1
j " Z - Z3)¢® R'dR’ Z - Z3)¢\Y R'dR’
+jeme); J[R”, (2 ~ Z5)g@ B4R’ + {emg} ;43 f (Z = Z3)g8
Nal +N¢2 Z,‘ ,
+ Z {{(R2hm¢)'}j+% ][ -J'g,(.f’ RydZ’
J=Na1+1 Zi41

Z; ,
+{jhme}; ][ " s + img®] Radz’

+{jeme}; fz’ HZ = 29 RadZ' + {emg} j4y f (Ragl) - Rg;)deZ'}
I+1
Na
’ h - jg@ R'dR
+2 {m¢}1+1 ng
j=1 R;

, R, ,
+H(B'hmg)'} ;41 J[a, -G RAR + {fhme}; ][R’_“ [g,‘,}) + jmg® ] R'dR'
. +1 . @) pr ’ Rj41 (1) pr ’
+{jeme; fﬂ, 32 = 22)g RAR ~ {eme;y f (2 - 2000 B4R f2.113)
' "y

Proceeding to point-match at the boundary element midpoints, we have

1 i
2emé(Ris1:23) = eng(Riyy, 21)

N, .
- R’ .
+ Z {{hm¢}5+§ ][ Jgg)R’dR’
j=Na+Naz+1 Rjs1

R, - (2 , R;
HBhne)Yjuy f, = 502 RAR + {jhme}; f
Rj41 R

41

|65 + jmgl®Y| RaR!
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j '] R’ !
+{jem}; fR’ 32y - Z)o RAR +{emebipy (2 - Z0)o) R’dR’}
Riypv  ? Riya 3

N01+N¢2 ’ Z,‘ . (2Y ’
+ {{(thms) bat f, - o) FadZ
juNa+1 Zin

Z;
+ibma)i f

541

‘ / % ' '
= PR+ Cengdi f, | Badl Byl rtz |

[6) + jmg®)| Radz’

. z’
+{jemt}; ][Z,

Nay Rj41
+Z{{hm¢}j+; ][ - jeQDR'dR’

J=1 R1
’ ! R+ . (2) prypt .1 Rt 1) 4 s n(2Y]| R aD?
+H(B'hm¢)'};43 ][ n <~ i9n RAE + {jhm}; ][R ¢ + jmgl2 ]RdR
j ;

R;

R‘.H ’ +1 ’
Hiemds fro (2, = B0 RER = lemi)say f 107 (2 - 2 ReRG110)

]

for the field points on contours I',; and I'y3 and

1 .

gemé(B2, Z,41) = eqmy(Ra, Z,14)
Na R;

D> {{h,...s},-»,% f. sedRaR

J=Na14+Naz+1 I+1

R; ' . R; . '
H(Rhng) Y0y f = 36D RAR + {jhms); f ., LR +imelY| RaR
41 i+1

. R’ . ’ R! ']
+{jem}; fn_“a(zﬂg = Z3)gl R'dR' + {em¢} ;44 J[R, (Ziyy - Z2)s) R’dR'}
T f+1

¢4

Na1+Naz Z; ,
+ E {{(thmé)'}jq.% ][ - 792 Rydz’
j=N.l +1 Z}+3

: % . (2
+{jhme}; ][ z [ + jmg®'| Rydz’

541

Z; ’ Z; ’ '
+lemli § | 3(Ziay - 20 RodZ' + {eme}sy f | (Ragl) -Rzgm)R'de'}
Zyi41 Zi41
Na Rj41
+Z{{hvn¢}j+1 ][ " - gD RAR
J=1 : R;
Y Rivs _ Y plaR + 1 B O 4 ime®] BB
H(®ma Yoy = 30 RO+ Ghm; f o0+ imald] R
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R4y 1 Rj41 O
Hiemsds f " i(Buy = 200 R - femelay " (Ziry =~ 200689 R’dm%us)

for the field points on contour I';2. The above set of equations may be written more

compactly as

§ [ - P*] C {ems), - [P] {iems}s = [3Q°C + Q¥ D] {hms), - [Q'] Litmel,
= {ein¢}a§2.116)"

where the matrix D arises from the derivative

2 Ri{hmg}; — R i+1{Amg}i+1
’ ’ — ! , [’ | b 2 2
{R h"w}j.q.% = #Zr(R'hmg)lr =R, 4 1B = Bj| (2.117)

and C is a matrix comprised of ’1’s along the diagonal and superdiagonal. Also, the
subscript s}, represents evaluation at the boundary element midpoints. In a parallel

fashion, the dual of coﬁesponding (2.116) may be written

§ [1 = P4| C {hmo}, = [P] {hme}, + [1Q°C + Q¥ D] {em), + [@] Liem),

= {hine}_(2-118)

The matrices in (2.116) or (2.118) are 3 x 3 in size, each element of which is a
matrix corresponding a particular integration and observation (field point) contours.
Each element of the submatrices is in Appendix F. For non-self-cell terms, the integrals
are evaluated via open formula numerical integration schemes. The self-cell terms are
given in detail in Appendix F. The integrals involving g,, are computed via Romberg
integration with a specified convergence criterion to ensure accurate evaluation for any

mode.
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Finally, augmenting finite element system with that formed by (2.116) and (2.118),

we derive the system

o

Aze

fa
At
Ag,
PéC

BGG

which is to be solved iteratively and where

e
ol

]
11

¢
r74

BzI

Bar

Az
A,

Az,

Blz
le

By,

4
ad

¢
1d

€
2d

]
dd

—B,,
—Br1a
—B,,
-By,
—pt
Asa
Ala
Ao
Ad

Ql

—B,y
-Bnr
—B,t
—Bqar
-Q
Ay
Alr
Az
Ay
PéC

Al
Az
Az,

0

-Bp

=dxd

Ao
AlLa
A
Aga

0

=[o 0 0 0 {c,)y

Q=0Q*C+@*D
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0 0 emél
0 0 €més
0 0 eméd

0 -Qt Jemt

Caa 0 hm¢a

0 0 hmer
0 0 Amez
0 0 Rmed

0 -P Jhmt

- =

T
0 000 {hiy ](2-119)

(2.120)



Chapter 3

Scattered Field Computation

In the far field the scattered fields are given by

() = Ey(F)é+mHyF)l (3.1)

wH'(F) = noHy(F)d - Ey(F)b (3.2)

We wish to compute the radar cross section given by [19]

=85
o = lim 4xr2 2O _ lim 4rr2 (D0 (3.3)

()P
el @R e E P

EAE

For TM, polarization we have

M
E4(r,0,4) =25 ) eny(r,0)sin(ms) (3.4)
m=]
M
wH(r,0,0) = hi(r,0) + 2 Y hiy(r,0) cos(me) (3.5)
m=]

and for TE, polarization we have

M

E(r,0,8) = €j(r,0) + 2 Z_: eme(r,0) cos(me) (3.6)
M

’)oH;(", 0, ¢) = 2.7 E hv.n¢(r» 0) sm(qu) (37)
m=1
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These combined with a unit amplitude incident field implies that (3.3) becomes

M
2 Z C:n¢(r,

m=]

m=1

M
+ |85 +2 3 hng(r.6) cos(m¢)|7] (38)

orm, = im 4xr? l

eO +2 z emé(r’

m=1

+ {2 E hpny(r,0) sm(m¢)'7] (3.9)

m=1

OTE, = rlirgo41rr2 [

We had previously discretized the Stratton-Chu integral equation for field points on
the integration contour as given in (2.113). Eliminating the principle value factor for
observation not on the integration contour, the corresponding scattered field equation

may be written

bR 2= [ {ihmsslD = 5 o Rm)g) + (i) [0 + a2
+i(GemNZ ~ Z3)02) + emg(Z — Za)gll)'} R'dR’

+ _/ {—J &1 (Rahmg)g$ + (hme) [g(l)+jmg.(3)']
+i(jeme)Z — 2092 + eme(RaglY) — Rgp)} RadZ'

4 [ {shmssD = 5 B B ) + () [0 + imalD]

+i(jemt)(Z - 292 - emg(2 - 2"} RAR' (3.10)

We wish to evaluate this expression for large kor = VRZ + Z2. For large r

’

! 7
\/R2+R'7-2RR’cosu+(Z—Z’)’:kor--i—zr-—%li—cosu (3.11)
Thus, we may write (2.97)
—jkor
gm(R,R,2,2") ~ le e 3 f "ﬁ&wucos(mu)du (3.12)

Noting that the integral is related to the Bessel function of the first kind, we may write
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(3.12) as

Im(R,R',2,2") ~ az’“‘f,,.(n' 0)

ko

where we have used

™ Im(B) = = f' /8°%% cog(mz)dz
Jm(R',0) = j™Jm(R sin6)

and the fact that

R=korsind Z = korcosé

Likewise (2.98) - (2.102) become

(1)(R Rl Zl) ~ eJZ’ooc&fcm(Rl 0)

2k

9&(R, R, 2,2") ~ ko e’z"’“‘f.m(R' 8)

’ ’ ~_Jkoe jZ' cos § ’
Sn(R, R, 2,2') 2k0, Fm(R,6)
) 4 ~_-1k°e Z'cocﬂ Y
AR50 H0 G o =t 0
o' (R, R, Z,2') ~ f - e’z'“"f,,,.(R’ 9)

where

Jem(R',0) = j™~1J. (R sin §)

J,,.!R sm0!

’
Jom(E',6) = —mj™ R'gin @

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

where the prime on J indicates differentiation with respect to the argument. Substituting

these expressions into (3.10) results in the expression

e~k
ho(R,Z) = Si— 1.(m,0)

(3.24)



where
R . Ra -
fo(m, 8) = ei% coe? /o {hmo (G fom) + (Ghmt) fom + (Fem) €08 8fum
—€m¢ €08 8(j fom)} R'dR’
. .
+ /z, 7' %29 {(ihons) fem + (Jeme) OB fom + mg 80 8(j fm)} R2dZ’
465580 [ (hesg(ifom) + () om + (Geme) 080 fom
+em¢ co80(jfom)} R'dR’ (3.25)

Using a midpoint integration to compute the integrals, (3.25) becomes

No
fe(m,o) = ei% coef E {{hm¢}j+%[jfnm(Rj+%’o)] + {Jhmt}chm

J=Na1+Na2+1
+{jem:}; cos b fom — {emé}j-;-% cos o(]fcvn)} Rj+§ Aj
Nai+Na 5Z.. 4 cosd
+ Z € H* {{Jhml}.)-fcm(R%o) + {jemi}j cosofm
j=Na1+1 .
+{eme};44 8in 0(ifm)} B2,
. Ne1
+e’z‘ cos 2:1 {‘{hmé}j.g.% [J-fm(R,'.,.;., 0)] + {Jhmt}chm + {jemt}j c08 6 fom
J=

+{em¢}j+% cos 0(jfcm)} R_H_%A,- (3.26)

Letting fs(m, @) be the dual of (3.25) we may write (3.8) as

M 2
"T_M’\J%MI = Zl;_- [2 3 ™ fo(m,6)sin(m)
m=1
M
+|/a(0,0) +2 3" 5™ fa(m,6) COS(M)H (3-27)
m=1
o M ?
T_E:\Kg’_wél = 4% [ 1e(0,8) +2 " ™ fo(m, 0) cos(me)
m=]1
M
+2 zjmfh(m,o)sin(mml’] (3.28)
m=1
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where A; is the length of the jth boundary element.
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Chapter 4

‘Results

The scattering patterns for a test body are shown in figs. 4.1 - 4.4. The structure
is a conducting right circular cylinder of length 1\ and radius -156 Fig. 4.1 shows both
the TE and TM cases for broadside incidence for mode 0 and as seen these are in good
agreement with corresponding data based on the MOM code CICERO [7}, except for
some deviation of the TE curve in the region between 0 and 30 degrees. The results for
mode 1 are shown in fig. 4.2 and again, similar observations are applicable in this case
as well. Fig. 4.3 shows the sum of modes‘ 0 and 1, where we now observe a disagreement
of the TM curves indicating that the phase associated with modes 0 and 1 must differ
with respect to the data obtained from the CICERO code.

Fig. 4.4 shows the bistatic. scattering pattern for the same geometry with axial
incidence. Only mode 1 yields a non-zero solution in this case and the depicted results
again show some deviation from the reference data in the forward and backscattering
regions. Presently, we are investigating the cause of these disagreements and in addition,
we are researching new approaches to improve the storage and computational efficiency

of our code.
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Figure 4.1: Mode 0 TM and TE bistatic scattering pattern from a perfectly conducting

circular cylinder of length 1A and radius 0.1 for broadside incidence.
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Figure 4.2: Mode 1 TM and TFE bistatic scattering pattern from a perfectly conducting

circular cylinder of length 1A and radius 0.1\ for broadside incidence.
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Figure 4.3: Modes 0+1 TM and TFE bistatic scattering pattern from a perfectly con-

ducting circular cylinder of length 1A and radius 0.1 for broadside incidence.
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Figure 4.4: TM and TE bistatic scattering pattern from a perfectly conducting circular

cylinder of length 1A and radius 0.1 for axial incidence.
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Appendix A

Derivation of Modal Incident
Field

Consider a field incident at a point ¥ = (r,¢,2) at an angle (¢%,¢) (as indicated in

fig. 2.1 ) of the form

U6 50,0, 2) = $le=TR07 (A1)

0,8 p,b,2) = —fie~TRT (A2)

where the ¢' direction is perpendicular to the plane of incidence and & direction is in

the plane of incidence. Using

T =2sinfcos¢ + §einfsing + Zcosd (A.3)
3 = 25in6 cos ¢' + §5in ' sin @' + 2cos 6’ (A4)

the argument of the exponential becomes

Fo-F = kor(—3'-F) (A.5)

= —ko [p sin 6" cos(é — ¢') + z cos 0‘] (A.6)
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in cylindrical coordinate system. Using these and the fact that

¢ = —26inb' + jcos b’ (A.7)

6 =zcos6 cosd’ +jcosfising’ — 2sinf' (A.8)
£=fsinfcosd+bcosfcosd— dsin ¢ - (A9)

§ = 7sinfsin ¢ + f cos O sin ¢ + Pcos ¢ (A.10)
$=#cosf —fsind (A.11)

(A.1) and (A.2) become

(6016~ ¢',2) = [poin(6 — ¢) + Pcos(g — ¢')] ePolosind conl=¢'brecnt] (4 19)

E(6%0,6 — ¢',2) = — [pcos 6 cos(¢ — ¢°) — pcos ' sin(¢ — ¢') — £sin 6]

ejlq,[pdnﬂ" cos(¢—¢*)+2 cos 6] (A13)

The previously derived fields may be expanded into a Fourier series in the parameter

¢ — ¢* by first writing (A.1) and (A.2) as

T p0-¢'2)= Y Tul(8'ip,2)em-#) (A.14)
E(ai;P’¢-¢"’z) = 2 zm(oi;Pvz)ejmw_&‘) (A.15)

and then making the definitions

F(0:0,6 - ¢') = eoruind cos(é-4) (A.16)
fo(8;p, 6 — ¢') = cos(¢ — ¢') £ (6% p, 6 — ¢') (A.17)
fo(6%;0,6 — ¢') = sin(¢ — &) f(6'; 0,6 — &) (A.18)
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Expanding each of these into a Fourier series in (¢ — ¢°) and using the fact that

f(8) = f(-¢) == fon(v) = f-m(v) (A.19)
[(¢) = —f(~¢) = fm(u) = —f-m(v) (A.20)
we have
f(6p,6 — ') = fo(8',p) + 22 T (€%, p) cos[m(¢ - ¢)] (A.21)
15,8 = ) = fal,) +2 mij:l fom (6, ) conlm($ — 4] (A.22)
150,86~ ) =25 3 fon(8,p)sini(s - 49) (A.23)
where
Fnl,p) = % /0 T eihooning conu gy dy (A.24)
fom(0,p0) = % /o " cos ueikorsin®’ cont coq(my Ny (A.25)
fom(8,p) = —% /0 " sin yeiRostind’ conu gin (o ydy (A.26)
Noting the identities
P J,.;(ﬁ) = % /o T ifoonz cos(mz)dz (A.27)
N n(B) = = /0 " cos 2e38°% cog(mz)dz (A.28)
i In(®) = -2 /o' sin 28 gin(ma)dz (A.29)

where the last two are derived from the first by differentiation with respect to 8 and

integration by parts respectively, we may write (A.24)-(A.26) as

Sm (91" P) = jme(kOP sin 0:’) (A.30)
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fom(8%,p) = 7™ 1}, (kopsin 8)

fm(oiyp) == fm(o'.yp)

—_—
kop sin 6*

With these, we may proceed to rewrite (A.14) as

z(oi;P’¢— ¢‘1z) = e’.b‘““ i [p‘IM(o"P) + &fc’n(o"l’)] e-""'("“i)

m=-00

z(ai;p’¢ - ¢'., 2) = _ejbzcond"

3 [6fom(6,9) €08 8 = Bfom (8, p) cO8 8 — 2fm (8, p) sim 6] T (4=¢")

ME=00

or, using (A.19) and (A.20), we have

T(6';0,6 — ¢',2) = ehoros® [ﬁ2j ff fom(8',p)sinim(¢ — ¢)]

m=1

+850(800)+ 823 fom(®', p) coslm(é — ¢)

m=1

&0ip,¢—¢',2) = —eihozcosd
{ﬁcoso‘ [fco(o",p) +2 i fom(8', p) coslm(@ — &)

m=1

“bcost’ [2,- S fom(8,p) sinfm(8 - 6]

m=1 p

—2sgin 6 [fo(oi,p) +2 f: fm(8',p) cos[m(¢ - ¢‘)]] }

m=1

In this work, we will use the ¢ components of each of these equations.

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)



Appendix B

Maxwell’s Equations for
Axisymmetric Media

The usual Maxwell’s equations in a source free region are given by

V x E(F) = —jwpl (B.1)
V x H(F) = jweE (B.2)
v-D(F)=0 (B.3)
v.BF) =0 (B.4)

In cylindrical coordinates the electric and magnetic fields may be expanded into a Fourier

series in ¢ as

EF) = f: Em(p,2)e’™* (B.5)
TH(F) = _fj Fon(p, 2)ei™# (B.6)

Substituting these into Maxwell’s equations, we obtain

V % B + %7{,,, X ¢ = jwenEm (B.8)
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Appendix C

Derivation of Boundary
Conditions

In this appendix, the axial and perfectly conducting boundary conditions are derived.

C.1 Derivation of Axial Boundary Conditions

Substituting the Fourier series representation of the electric field into the divergence
condition we obtain in the normalized cylindrical coordinate system
V- (Zme™*) = ko™ [Reremp + ﬁ(‘rcm;) +iRerems + Flerem:)] =0 (C.1)
Thus, |
€remp + R[ fr(eremy) + Ferems)] = —imeemg (C.2)

as Morgan had previously derived. Taking the limit of this expression as R — 0%, we

obtain
emp + jmemg =0 (C.3)
Expanding the derivative w.r.t. R in

kUimem, — F&(Reme)] = jprhm: (C.4)
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and taking the limit as R — 0%, we obtain
€mp+Lemg =0 (C.5)
Combining (C.3) and (C.5) and solving for e,,4 We have
(m? — 1)emglrot =0 (C.6)
In a similar manner we obtain the dual expression
(m? = 1)hmglpot =0 (C.7)
For m # 1, the following axial condition holds
emglR=0+ = Amglr=o+ =0 (m #1) (C.8)
To derive the condition for m = 1, lets first consider
emz = Jfm [m F(Reme) — Rty x(Rhmg)] (C.9)
As R — 0%, ey, — 0 for m # 0. Differentiating (C.9) with respect to Z we have
Fems = jfm {mR Zrems — B[ Fybir (hme + R Fhme)
+ir ( Fphme + R sfizhms)|} (C.10)
Clearly, as R — 0% &ems; = 0 for m # 0. Differentiating (C.2) with respect to R after
dividing by €,, we obtain
Freme +2 [ d(cremp) + Fp(ereme)llnaos = —m remelpoor  (C.11)
Accounting for the behavior of e, and e (C.11) becomes

2 Femptemp F(lne)+ jm Fempg =10 (C.12)
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To find another equation in terms of fxem, and Feme, We multiply (C.4) by R

and differentiate it with respect to R to obtain
R 5 (firhms) + pirhme = j [2 fgeme + B Erems = im fhem] (C.13)
Letting R — 0% we obtain
25 feems + M Fxemg =0 (C.14)
Substituting (C.14) and (C.5) into (C.12) we obtain
(4=m?) Hems + emp F(ne,)=0 R=0, m#0 (C.15)
In an analogous fashion, the dual of (C.15) is given by
(4= m?) Fhmg + hmg F(lnp)=0 R=0, m#0 (C.16)

For ¢, and u, constant in R at the axis of symmetry and for m = 1, (C.15) and (C.16)

reduce to

THeme =0 (C.17)

Fehme =0 (C.18)

C.2 Derivation of PEC Boundary Conditions

On a perfect conductor the condition
AaxE=0 (C.19)

Substituting the Fourier series expansion for the field into this boundary condition yields

the following condition on each mode
AXEn =0 (C.20)

48



The second Maxwell’s equation for the mth mode is given by (see an appendix)
V x Fom + %’-ﬁm X ¢ = jwenEm (C.21)

Crossing this equation with # and noting that # - &y, = 0 on the conducting surface, we

obtain
AxX(Vxhy)=0 (C.22)
Carrying out the curl in cylindrical coordates yields

i X {ﬁ [§ Hhme — i;hnw] + J’[ #ohmp = D%h"“]

+2 | £(phme) = Fhmo|3} =0 (C.23)
Noting the identities
fx p=@(h-3) (C-24)
Aixg=1 (C.25)
AxXE=—¢(h-p) (C.26)

we find that the middle term of (C.23) implies
Fehmp = £hms (C.27)
and the first and third terms may be written
O(1-2) [4 Khme = Lhma] = B2 -5)[ £(obme) = Hhmpli =0  (C.28)
Rearranging terms, we have
- [Vilphme) - £ Ehmi| =0 (C.29)
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or

and we have used the following

£vn=0

¥ = kophme

50

(C.30)

(C.31)
(C.32)

(C.33)



Appendix D

Evaluation of Finite Element
Contour Integral

D.1 Contour Integral Evaluation along Conducting Sur-
faces

It is shown in the appendix that along perfectly conducting surfaces the conditions

Yo = 0 (@)

&Y = 0 (D.2)

must hold. During the assembly of the finite element equations (i.e., when the summation

over all elements is performed), those rows and columns of the finite element matrix

corresponding to nodes on the Eonducting boundary are eliminated. As a result, the
corresponding contour integral vanishes a.iong a conducting boundary.

Imposing the condition (D.2) results in the elimination of the associated contour

integral since on the conducting surface
A (PXVeth)=1-Vethe =0 (D.3)

(check this stuff)
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D.2 Contour Integral Evaluation along the Axis of Sym-
metry

In the appendix, the axial boundary conditions are derived

eme =0 (D-4)
hm¢ =0 (D.5)
Frems =0 (D.6)
Frhms =0 | (D7)

Conditions (D.4) and (D.5) results in the elimination of the rows and columns of the
assembled finite element matrix associated with nodes on the axis.

Alternatively, since R — 0 all terms in the contour integrai are zero by virtue of the
chosen weighting function.

(may explore the possiblity of a different weighting function which does not guarantee
this)

D.3 Contour Integral Inter-element Connection Cancel-
lation

Since the argument of the contour integrals are tangential fields at the element bound-
ary, they will be continuous between adjacent elements. As a result, the contour inte-

grations along the element intersection cancel.
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Appendix E

Evaluation of the Finite Element
Matrix Elements

In the evaluation of af; and bf;, integrals of the form

Py = $/ R*Z%RdZ (E.1)
e
and
ReZb
ch=sé mdw (E.2)

Clearly, Q. exhibits singularities for real x. To evaluate this integral, consider an integral

of the form
I= f / g(R)Z*dRdZ (E.3)
Se

To evaluate the integral, first transform it to an integration along the element boundary

via

= ZH1

%(R,Z)=-9(R,Z L (E-4)
Using Stokes’ theorem

//(va)-d3‘=}{ 5.dl (E.5)

5 c
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and
VxT=-¢g(R)Z (E.6)
dS = $ dRdZ (E.7)
Inserting these into (E.5) yields
/ / g(R)Z*dRdZ = 1 +1 g(R)Z"“dR (E8)
Via (E.8), (E.1) and (E.2) become respectively
Py = 3% fp‘ ReZM1dR (E.9)
and
1 Re Zb+1

Qu = 757 P ot —m7 R (E.10)

where the contour integration is taken in a counterclockwise fashion. For linear triangular
elements, I'® is represented by a summation of three contours, one for each side of the

triangle. The variable Z may be thus expressed as

Z(R)=wR+ vy 7 (E.11)
where
_ -2
i o S} E.12
T R - R (B-12)
=21~ uyhR (E.13)

Then Z™! may be expressed as

o (ud Rop = o1+ 2Ry

_ ,,H): (b+1) (uR) (E14)
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where

(n) = = (E.15)

m m!(n - m)!
Thus, by writing the integral in (E.10) as a sum of an integral along each side of the
triangular element, it be rewritten as

1 SHopag (u,)' Hl/R'” Rotr

Clearly, integrals of the form

Ry R?
I(n, m) = /& de (E.l7)

for n =0,1,...,a + b+ 1 must be solved. For n = 0

Riga

. m=0
I(0,m) = R (E.18)

52=[In(m — Rx) — In(m + Rx)] m>0

For n = 1 it is easily shown that
1 Ry
I(1,m) = == [In(m — Rx) + In(m + Rk)] m>0 (E.19)
2Kk Ry

Using the definition of the principle branch of the natural logarithm in the equations
above guarantees that the singularity is properly handled. For values of n > 1, the

recursive formula [17]
m2
I(n,m)=I(n,0)+ ?I(n -2,m) (E.20)

is used. Thus, (E.16) may be written in terms of I as

Qus = bilza:Z(b-'-l)( ) v+ I(a + p,m) (E.21)

i=1 p=0
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In a similar fashion,

Ro+p+1 Ry,

: 1 3 b1 b+1)( )p b1
P“"‘b+1§§( w) " atptily

The shape function is written in expanded form as

Nf(R,Z2) = =——(af + BfZ + 1fR)

20‘

where

1
Q= Z(6af - B
of = Z;R - ZiR;
g = E-E

¥ = 2i-Z
We had derived in section 2.1
a,?j = // [—fmc,Rvg(RNf) . V,(RN;) + c,NfN}] ds*
SG

Noting that

2Qe 20¢
5+ Z(Bia} + Biaf) + R(v{a} + 7jaf)

Vi(RNf) = p[N= R7]+ ; RBE

NiN; = 0 293)2 [a
+RZ(BFY; + B1E) + 22655 + R85
Substituting these into (E.28) and reducing we obtain the desired result
aj; = [-afaiQuo - (B{e; + B5af)Qu — 2(7{af + 7faf)@20
—2(B875 + B57)Q ~ BB Qa2 — (4757 + BB5)Q30
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(E.23)

(E.24)
(E.25)
(E.26)

(E.27)

(E.28)

(E.29)

(E.30)



+aiaiPo + (Biaj + Bof)Pu1 + (vfaf + vfaf)Po + (B57F + Bi7F)Pa

+B85B85 Pia + 7f 7;P301(2W
In a similar manner, we may write

- S/ j [mé x V(RN?) - Vi(BNF)E;] ds*

b= 2074 ,//Rf [ﬂe (Ne f,",’;) - B; (N°+%7’;)] dse

and likewise as

b = Caepl(Biet = Bra)Qu + 26575 - £i15)Q]
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Appendix F

Boundary Integral Matrix
Elements

In this appendix, the elements for the discrete boundary integral system are pre-

sented.

F.1 Elements of P¢

Lpf’l s =0 (F.1)
'Pd’ _ Z; [R QY _p '(R R..Z Z/)] R,dZ' (F.2)
12 i - 2,01 29m i+%gm .‘+%7 2y 41, 2 .

[ o R; Q1) ’ ! 1t

P = @-2) ](R'“g,,, (Riygr R, 21, Z3)RdR (F.3)
¢

B = (Ziyy-2) B Y (R, R 2,1, Z0)RAR (F.4)

") i T Tp TR RS T .

: Z; ;

P8, = f, [RaokY - Ragh(Ra R, 2y, 2] RadZ (F-5)

541
: R; ,
Pf),. = (Ziy - 2) fn’ W (R, B, Z,yy, Za)R'dR (F.6)
41

- Ry41 "

P, = @a-2)f " - o Ry B 20, )RR (F-7)
¢
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[ 32]..:. = ][ Z [Rz (1)’-Ri+§g:,,(R‘+%,R2,23,Z')] RodZ’

0

[ 11] ij

F.2 Elements of P!

:P ltl g =0

'szz g = ./z ’z; (21 = 2')9%) (Riyy B2, 21, Z') RodZ'
L), = (Z1-2) / - 39 (Riy1, R, 21, Z3)R'dR'
[P, = (Zus-2) / S e (R, B, Ziy3, Z))RAR'
Pl = iy = 2068 e Ray By 2R
:P 2'3: i = Gy —2) / el (R2, R, 2,1, Zs)R'dR'
Ph), = (Zs-2) f 50 (Riyyo B, 25, 2y RUAR
:sz: i /Z,z“ 3(Zs - Z’)g(z)'(Rg‘-{.%'Rh Z3,Z")R,dZ’
P§3 g =0

F.3 Elements of Q¢

1 Rj41
[Q?lﬂ i = ]lR,- - ng(R.'+§ vR',2,,Z,)R'dR’
[Qf"‘: i 0 :
é ] - Rjs1 | (2) ’ !yt
[0ts],, = ][R,_ (Rip1 B, 21, Z5)RUdR
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(F.9)

(F.10)

(F.11)
(F.12)
(F.13)
(F.14)
(F.15)
(F.16)

(F.17)

(F.18)

(F.19)
(F.20)

(F.21)



23

F.4 Elements of Q¢

@2
¢']
-
.st
¢I1

31

oo
%32

o]
.Qn. i
o
ot
o]
)i
6
Q31 i
SR
@32 ij

%)

dis

[ ¥22],.;

LQ&

ofl,
of],
of],

145

di5
dis
Iy

EES)

R, 2
0
Rt o)\p, B o
f 29m (R2’ R, Z.'+L ’ ZS)R dR
Ry 2
f e 39 (R; 1, R, Z3,Z1)R'dR
R; 2
0

Rj4s
9@ (R, 1, R, Z3, Z3)R'dR’
][ R; +4

R, ’
f};“ = 19(2) (Ri+§ ,R',Z:,Z,)R'dR’

]

Z; ,
f i) —Jg()(R|'+%sR2,Zl,Z')Z’dZ'

Zj41

R .
£ - 0 (Reyy R\ 2, Z)R AR
]

R‘ !
fﬁﬁl - 9 (Rz,R',Z‘+%,Zl)R’dR’

)
Z; ,
f ’ - Jgf('r?) (R21 R?y Z,—_,.%,Z')Z’dZ’
: Zin
R, ,
fﬂ " - Jgr(:) (R29 RI? Z.'+%, Z3)R’dR’
]
R, ,
f R’“ - 9% (Riyy, B, 23, Z1)R'dR
]
ZA
f ¢) - Jg(2) (Ri+%,R2,Za,Z’)Z’dZ'
Zjs1

B _ o0y o
fR -ng (R|+1,R Z3,Za)R dR

]
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(F.25)
(F.26)

(F.27)

(F.28)
(F.29)
(F.30)
(F.31)
(F.32)
(F.33)
(F.34)
(F.35)

(F.36)



F.5 Elements of Q!

Rj41

@4, = ][R,_ [0 + jme@ (Riys, B, 22, 2:)] RAR' (F.37)
" Z; 5

@t i ][ zJ o9 + jmgf? (RiyysR2,21,2")| 2'd2 (F.38)

S j4+1

PR Rig1 ¢ ) 4 i (2 , 1 ot v

_Ql3_ i = fﬂ, 9m +ngm (RH.%’R ,Zlaz3). R'dR (F.39)

, R, ;

Q4] = ][R’_“ 08) + jmg® (Ra, B!, 2,1, 21)] R'dR’ (F.40)
Z; 5

@), = f. [ +ime (Be, Ba, 2,0y, 2] 22’ (F.41)

g L Zi41 3 J

o By ) 2y .

.Q”].'j = ][R, g +imgn’ (Re, B +hzs) RdR (F.42)

r R’ 1

’Q:'n]’.j = f R,_H 0D + jmgl® (Riy, R, Z3,2:)| R'dR! (F.43)

. Z

Q%] g = ][ z’ o0 + imgY (Ryyy, Ra, 25, 2')) 2'd2’ (F.44)
) +1
R; '

[0, = f n,-“ (99 + img (Riyy, B, 25, Zs)] RGR' (F.45)

F.6 Self-Cell Evaluation

The integrals in the matrix elements [P§}i;, [QF,)i and [Q%,)i; contain integrable
singularities. They could be integrated numerically without modification as long as the
singularity point is avoided, but costs excessive computation time. To avoid the resulting
excessive computation time and innacuracies, the integrals are evaluated as in [5]).

For self-cell integrals involving gm, Glisson gives

{;
][ :gm(R,-+1 R Z, 1, 2R
1
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n —-3Ro R.
= —1; f ][ [-e—i— cos(mu)R' - —I:é?-] dudl’
+I(R.+§ ’ l;‘+% ’ h ’ 12) (F.46) ‘

where

R. i 2 R’R‘ i
I(R,z,zl,z,)=-'—:i)(‘ [Rix( V_ 8 ) R g
1 2

+2—1,; [(l2 = 1) = (12 = DIn(la = 1) = (1 - W) 1n(l - 1)) (F.47)

and where K is the complete elliptical integral of the first kind, [ may be either Zor R

and
Ri=[(Ripy — RV +(Ziyy - 27 (F.48)
Ry = \[(Bog + BV + (Zipy - 27 (F.49)
Also,
Ro= \/R’+1 +R?-2R, 3 Reosu +(Z;yy = 2') (F.50)
(F.51)

The first and second integrals of (F.46) may be computed using an open interval numer-
ical scheme that also avoids the midpoint.

The integral expression for the self-cell of P,‘; may be rewritten as

[P.f,] = )[ = [—% ][: t:osu(1 -}é ﬁo) e;;: cos(mu)du
]

—-jRo
- J[o (4 5k) +R':’,RO) 82;0 cos(mu)du| R3dZ’

fz [ ][x&_z sm’(—) cos(mu)du| R3dZ’ (F.52)
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where we have used the identity
l-—cosu= 2sin2(gg-

The solution to (F.52) is

[75]., ][:“1][[1“ —-’ﬂ”’(’"“)mn(%

u?

4 [R3u + (Ziyg - 2')7]

R2
+52 I (B2, 24y, Zin1, Z3)

3 /2] duR%dZ’

where

dudl’

IR = ][ ][

- = {(z — 1) [Rr +/U-hy+ szz]

+(3 = D)ln [R:r M szz]

~(1 = b)la{l = 1) = (&3 - DIn(l; = 1)}

In the same manner we have

“ =- J[h J f [(1 + 7R0) e-ino sin(mu) sin(u)R’

mu’R, 1 ,
- 37 duR'dl
2 [R?+§ w4 (R - R’)’]

mR,

s I'(RH.% ’ RH.% » Ri" Ri+l)
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(F.54)

(F.55)
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where
h=Ri h=Ri =Ry V=R fora=1
h=2Zip b=2Z lyy=2Z,; V=2 fora=2 (F.57)
h=Ri h=R lyy=Ry V=R fora=3
Finally, we treat each term in [Q},],; seperately and obtain

x | e=iRo R. Hird
][ [ cos u cos(mu)R' — ] dud!’
Ro

+I(Rala Ilv12)

+jm{f ][ [ 1+J Ro sm(mu)smuR'

mqu,-_,,}

- 375 | duR'dl
2 [R?ﬂu"’ iy - z')z]
+___‘iiIr(R‘ Aol %,tl,z,)} (F.58)

where (F.57) is used to determine the expression for each value of a.
The self cells involved in the other matrices contain non-singular integrands and may

thus be integrated numerically without modification.






